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This paper investigates the crossover-regression phenomenon in compensatory manual-control tasks. The

adjustment, between-subject variation, and accuracy of linear human-operator models are analyzed in detail. A

theoretical investigation into closed-loop error minimization will be presented. Our main hypothesis was that

crossover regression is caused by an operator’s inability to sufficiently decrease the time delays required to limit

forcing-function resonance. To test the hypothesis and explore the use of linear-operator models in regressed

conditions, an experiment very similar to McRuer’s landmark 1965 experiment was conducted. A comparison

between regressive and nonregressive conditions revealed that crossover regression is indeed a strategy to reduce

forcing-function resonance. The bandwidth of the forcing-function signal at which participants regressed their

crossover frequency was found to vary considerably between participants. In regressed conditions, the between-

subject variability in frequency-domain performance increased. Additionally, the operator control behavior became

increasingly nonlinear, resulting in larger uncertainties and a higher between-subject variability in the linear-model

parameter estimates.

Nomenclature

e�t� = tracking error, in.
Kc = controlled dynamics gain, in:=in:
n�t� = operator remnant activity, deg
T = measurement time, s
u�t� = stick deflection, deg
Yc�j!� = controlled element dynamics

Yp�j!� = pilot describing function

y�t� = system output, in.
� = damping ratio
�2�!� = squared correlation coefficient
�2a = squared relative remnant
�i = forcing-function standard deviation, in.
�e = effective time delay, s
�d = pure time delay, s
�I = lag-time constant, s
�L = lead-time constant, s
’M = phase margin, deg
’�!� = phase shift, deg
!c = gain crossover frequency, rad=s
!i = forcing-function bandwidth, rad=s
!nm = neuromuscular break frequency, rad=s

I. Introduction

C ROSSOVER regression in manual control is a control strategy
where the human operator reduces the tracking bandwidth

to improve closed-loop performance [1]. In the literature, many
occurrences of crossover regression in manual-control tasks can be
found. These are caused by changes in forcing-function bandwidth
[1], controlled element dynamics [1–5], degraded display charac-
teristics [6], and divided attention tasks [7].

One generally accepted explanation for crossover regression is
given in McRuer et al.’s landmark 1965 report [1]: crossover
regression results in smaller mean-squared tracking errors when the
forcing-function bandwidth approximates the crossover frequency.
This explanation, however, is limited to certain classes of controlled
system dynamics and a specific type of forcing function; much
remains unexplained. First of all, a general cause of crossover
regression in the earlier mentioned cases is unknown. It is also not
clear how the human operator adjusts his or her neuromuscular
dynamics and equalization selection when regression occurs. Effects
of between-subject variability have seldom been reported. Further-
more, it was observed in experiments that the linearity of the control
behavior decreased when crossover regression occurred [8,9].
This raises questions whether linear models still apply in regressed
conditions, and alsowhether the corresponding parameter estimation
techniques are still valid. The occurrence of crossover regression in
previous experiments, both expected [5,6,10] and unexpected [8,9],
and our recent work on developing a handling quality assessment
method based on crossover regression [3,4], renewed our interest.

The objectives of this paper are twofold: first, more insight needs
to be obtained into the phenomenon of crossover regression and
the associated adjustment, between-subject variation, and accuracy
of linear-operator control-model parameter estimates. Second, to
predict more accurately whether crossover regression might occur
in experiments, more knowledge regarding the possible causes of
crossover regression is desired.

The paper has two parts. First, the main findings of previous
studies into crossover regression are summarized. By means of a
theoretical analysis, an explanation for the maximum closed-loop
input-to-error amplification ratio is derived, relating crossover
regression to human-operator time-delay constraints. The second
part describes an experiment, designed to replicate the Systems
Technology, Inc. (STI) experiment. This experiment was conducted
to test our hypotheses and to investigate the changes in operator-
model parameters between conditions with and without crossover
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regression. The paper concludeswith a summary of themainfindings
observed in the theoretical and experimental analyses.

II. Previous Investigations into Crossover Regression

Crossover-regression has been observed using all basic types of
controlled element dynamics (proportional [11], rate [12], and
acceleration [1]), as well as aircraft dynamics [3,4]. Elkind was
the first to encounter crossover regression in an experiment with
proportional controlled element dynamics [11]. He observed that, for
the bandpass conditions,∗∗ the operator gain decreasedwhen forcing-
function bandwidth increased.

Further research into crossover regression for compensatory
tracking tasks with a central visual display was reported by McRuer
et al. [1]. Their experiment combined proportional, rate, and accel-
eration controlled system dynamics Yc with three forcing func-
tions containing bandwidths !i of 1.5, 2.5, and 4:0 rad=s. We will
refer to this experiment as “the STI experiment” with STI 6-4,
7-3, and 8-2 forcing functions; the numbers denote the number of
high-magnitude and low-magnitude sinusoids.

To model the quasi-nonlinear human operator, McRuer et al. [1]
studied operator control behavior in the frequency domain. The
human operator is decomposed into a linear describing function Yp
and remnant n, which is the part of the response for which the linear
part cannot account. This is illustrated in Fig. 1. The linear part
should be such that it results in similar responses as the quasi-
nonlinear human operator, when excited by the same forcing
function i.

McRuer et al.’s [1] crossover model (COM) describes the
systematic adaptation of operators to various types of controlled
dynamics and forcing functions. Its main assumption is that
operators adopt a sufficient lead–lag equalization, such that the open
loop approximates integratorlike dynamics in the crossover region,
with sufficiently large stability margins:

Yol�j!� � Yp�j!�Yc�j!� _�
!c
j!
e�j!�

com
e ; when !� !c (1)

The COM is composed of two parameters: the effective time delay
�come , and the (gain) crossover frequency !c. For performance, the
crossover frequency should exceed the forcing-function bandwidth
!i to warrant an adequate response.

The crossover frequencies measured in the STI experiment are
shown in Fig. 2. The crossover frequency !c0 depends explicitly on
the controlled dynamics Yc and is defined as the value of !c when
extrapolated to!i � 0. The figure shows that, for increasing forcing-
function bandwidth, the crossover frequency slightly increases.
Regression was only found for the STI 8-2 forcing function with
double integrator dynamics [1].

Variations in operator-model parameters, measured in the STI
experiment, led to the definition of the verbal adjustment rules [13].
Rule 4c relates the occurrence of crossover regression to the forcing-
function bandwidth and the controlled element dynamics: “when !i
nears or becomes greater than 0:8!c0 , the crossover frequency
regresses to values much lower than !c0 ,” or

!i < 0:8!c0 (2)

This inequality, also included in Fig. 2, can be used to predict when
the operator will adopt a crossover-regressive strategy. For example,
the limit suggests that regression will also occur for rate control
dynamics when the forcing-function bandwidth exceeds 4:0 rad=s.

McRuer et al. [1] explained the effect of crossover regression with
normalized mean-squared error (NSME) variation [1] and closed-
loop input-to-error spectra [13]. The first rationale, integrating the
closed-loop input-to-error spectrum on the basis of the COM, is

shown in Fig. 3. It varies the normalized mean-squared error �2e=�
2
i

with the crossover frequency and eight different bandwidth values.
The latter two are normalized by the COM effective time delay �come .

For bandwidths below 0:8!c�
com
e , the optimal performance point is

always located at the stability limit, corresponding to a phase margin
of 0 deg. For higher bandwidths, the mean-squared error can become
larger than 1.0, and optimal performance is obtained by reducing!c.
In fact, Fig. 3 indicates that optimal performance is then obtained at
zero crossover frequency, corresponding to the operator releasing the
control manipulator.

The second rationale is illustrated in Fig. 4. The figure is based on
the COM, with rectangular-spectrum forcing function having power
at all frequencies up to the bandwidth frequency. Two closed-loop
input-to-error spectra are compared on a linear scale. When the
forcing-function bandwidth approaches the crossover frequency,
the shaded area under the curve, which is proportional to the mean-
squared error, is smaller for the regressed situation. In the regressed
condition, the operator adopts a lower gain and ignores high-
frequency input components to reduce the mean-squared error [13].
Note that Fig. 4 contains an inconsistency: the regressive curve
never intersects the unity gain line, which is only possible when the
time delay is zero.

III. Theoretical Analysis of Crossover Regression

When taking the compromise between performance and stability
as a starting point, it is plausible that the cause of crossover regression
is from time-delay constraints. In the following, we will investigate
which type of control behavior yields minimal closed-loop mean-
squared errors. The analysis will provide insight into the effect of
the crossover frequency and effective time delay on error reduction.
A two-parameter expression is derived that describes the control-
behavior adjustment for error minimization in the critical frequency
region. Considering this expression with an accurate operator
model, a general explanation for the cause of crossover regression
can be formulated. The operator models used in this analysis will be
introduced first.

Fig. 1 Quasi-linear human-operator model comprising a describing
function and remnant [1].

Fig. 2 Dependency of the crossover frequency on controlled element
dynamics and forcing-function bandwidth (reproduced from McRuer
and Jex [13]).

∗∗Conditons B7, B8, B9, and B10, having rectangular power spectra of
adjacent, equally wide frequency-spaced blocks. The upper frequency
(bandwidth) and lower frequency of these blocks were: B7 ( 0–3:02 rad=s),
B8 (3:02–6:03 rad=s), B9 (6:03–9:05 rad=s), and B10 (9:05–12:06 rad=s)
[11].
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A. Human-Operator Modeling

The precision model [1] (PM) approximates linear-operator
dynamics in the crossover region, plus the limb/manipulator neuro-
muscular dynamics††:

Ypm
p �j!��

Kp|{z}
gain

��Lj!� 1�
��Ij!� 1�|������{z������}

lead-lag

z������������}|������������{equalization

e�j!�d|{z}
pure time dealy

!2
nm

�j!�2 � 2�nm!nmj!� !2
nm|���������������������{z���������������������}

neuromuscular dynamics

z��������������������������������}|��������������������������������{limitations

(3)

The simplified precision model (SPM) is only valid near the cross-
over region and includes the basic equalization and effective time
delay [1]:

Yspm
p �j!� � Kp

��Lj!� 1�
��Ij!� 1� e�j!�

spm
e|��{z��}

effective time delay

(4)

It is important to distinguish between the various definitions of
operator time delays and the nature of lumped phase-lag contri-

butions. In order of successively more lumped phase-lag contri-
butions, these forms are as follows: the PM pure time delay �d; the
SPM effective time delay �spme , which lumps the PM delay with
phase lags from the neuromuscular dynamics; and theCOMeffective
time delay �come , which lumps the SPM effective time delay with the
equalization phase contributions. Clearly, �come � �spme > �d.

Fig. 3 NMSE for rectangular-spectrum forcing functions (reproduced from McRuer et al. [1]).

Fig. 4 Explanation of the effect of crossover regression for rectangular-
spectrum forcing functions (reproduced from McRuer and Jex [13]).

††The very low-frequency neuromuscular system dynamics were omitted
here [1].
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Remnant ismodeled byfilteredGaussian noise. It can be attributed
to perception inaccuracies and thresholds, variations in muscle
tension, inabilities to translate motor commands to precise control
actions, and time-varying control behavior [1,13–17]. A typical
remnant power spectral density is constant at low frequencies and
shows afirst-order roll off [13,14,18,19]. The remnant power spectral
density �nn�!� is injected into the closed loop after the operator’s
describing function (see Fig. 1):

�nn�!� �
����

Kn
1� �rj!

����
2

(5)

In the following analysis, the cutoff frequency is set to 4 rad=s
[13,14,19]. The remnant gain Kn is adjusted to obtain a remnant
power �2n that equals 10% of the total control signal power �2u. This
corresponds to remnant intensities as reported in the literature
[18,20–22].

B. Effect of Crossover Frequency on the Mean-Squared Error

The advantage of regressing the crossover frequency has become
clear from themean-squared error variationwith crossover frequency
(Fig. 3). In this analysis, it was assumed that the remnant was zero
and that the rectangular forcing-function spectrum had no power
content in and beyond the crossover region. Forcing functions in the
STI and current experiments, however, consist of sum-of-sinusoids
that also have (attenuated) power beyond the forcing-function
bandwidth !i. These sinusoid components are required to identify
human control behavior at the frequencies beyond the forcing-
function bandwidth.

Figure 5 shows a normalized mean-squared error variation plot,
produced by combining the SPM with sum-of-sinusoids forcing
functions that have power beyond the bandwidth frequency !i,
attenuated 20 dB. The controlled dynamics were first-order, because
this controlled dynamics requires no equalization. The effects of
remnant were again neglected.

Figure 5 illustrates that the best performance always corresponds
with mean-squared error values below 1.0. The general shape of the
curves for lowbandwidth values, that is,!i�

spm
e < 1:0, resembles that

of an inverted umbrella. The sudden growth at smaller phasemargins
indicates the resonance effects of high-frequency sinusoids. Appa-
rently, the sinusoids beyond the bandwidth frequency !i predo-
minate the mean-squared error values for combinations of high
crossover frequencies and small (<10 deg) phase margins.

The steady increase in the crossover frequencies that yield optimal
performance before the onset of crossover regression corresponds
well with the STI findings for this type of forcing functions [1].
Moreover, after crossover regression occurred, the crossover
frequencies that yield optimal performance are more realistically
located at (very) low frequencies, rather then being zero, which
would correspond to the operator releasing the stick.

The most important conclusion from Fig. 5 is still the same as for
the rectangular forcing function in Fig. 3. That is, when the norma-
lized bandwidth exceeds 0:8!c�

spm
e , a reduction of the crossover

frequency is necessary to warrant optimal performance when !i
increases. In Fig. 5, crossover regression is evidently not an issue of
stability, because the phase margin is always positive. For a fixed
time delay, this implies that, at some point, only a crossover-
frequency reduction yields the lowest mean-squared error. The
required crossover-frequency reduction could verywell be a result of

Fig. 5 Refined NMSE variation; sum-of-sinusoids forcing functions with �20 dB attenuated power beyond !i.
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a limitation in the operator’s ability to reduce the SPM effective time
delay.

C. Closed-Loop Error Minimization

To minimize NMSE, at some point a crossover-frequency de-
crease is required. An expression for the closed-loop error power
spectrum can be derived from Fig. 1, under the assumption that the
forcing-function signal, i, and remnant signal, n, are uncorrelated:

�ee�!�|�{z�}
error spectrum

�
����

1

1� Yp�j!�Yc�j!�

����
2

|����������������{z����������������}
input-to-error describing function;�ie�!�

�ii�!�|�{z�}
input spectrum

�
����

�Yc�j!�
1� Yp�j!�Yc�j!�

����
2

|����������������{z����������������}
remnant-to-error describing function;�ne�!�

�nn�!�|��{z��}
remnant spectrum

(6)

When only the error component due to the forcing function is
considered, minimizing the closed-loop input-to-error over all
frequencies implies that

�ie�!� �
����

1

1� Yp�j!�Yc�j!�

����
2

�
����
e

i

����
2

<1 8 ! (7)

Feedback systems containing time delays, such as biological
systems, always have frequency ranges that are amplified due to
resonance. The error reduction condition of Eq. (7) is therefore
not met at all frequencies. Which frequencies are suppressed and
which are amplified becomes evident by examining the closed-loop
input-to-error spectra in Fig. 6.

The figure is based on the COM and illustrates the effect of typical
values for the crossover frequency and effective time delay.Whereas
a decrease in effective time delay is always advantageous, the benefit
of a decrease in crossover frequency depends on the forcing-function
spectrum. For a forcing function with low-frequency sinusoids, a
high crossover frequency is beneficial; for a forcing function with
sinusoids in the amplification region, a low crossover frequency is
beneficial. Figure 6b also shows that, for a zero time delay, the low-
frequency sinusoids are suppressed without amplification at any
frequency. This shows that the amplification of the power content
originates exclusively from the effective time delay, although the
magnitude of the amplification depends on a combination of the
crossover frequency and the effective time delays.

A detailed analysis of the contribution of each sinusoid component
to the mean-squared error, for typical examples of SPM parameters,
is shown in Fig. 7. These spectra are created with the simplified

precision model, Yp�j!� � Kpe�j!�
spm
e , controlled element dynam-

ics, Kc=j! with Kc of 5, the remnant spectrum of Eq. (5), and
STI 8-2 spectrum forcing function. It shows that the forcing-function
sinusoid components located near the maximum closed-loop input-
to-error amplification frequency are the main cause of the mean-

squared error, for both nonregressed (Figs. 7a and 7b) and regressed
(Figs. 7c and 7d) operators. In the remainder, the frequency range
near the maximum closed-loop input-to-error amplification region,
or, more specifically, the frequencies just above !c, will be referred
to as center frequencies. To achieve the optimum performance, the
operatorwill attempt tominimize the sinusoids’ power at these center
frequencies while retaining effective suppression of low-frequency
sinusoids.

An accurate expression of the maximum closed-loop input-to-
error amplification ratiomight bevaluable, as this ratio turns out to be
crucial for operator adjustment to obtain minimal mean-squared
errors. Considering the Nyquist locus in Fig. 8, the power content
at frequencies on the locus traveling through the critical circle is
amplified.

The maximum amplification ratio is by definition the shortest
distance from the locus to the point ��1; j0�. This distance is
illustrated in Fig. 8 by kMpk. The derivation of an exact expression
for this ratio in terms of phase margin ’M and gain margin (GM) is
not possible. Instead, exact expressions for the amplification ratio at
gain crossover!c and phase crossover!cp can be derived. Thesewill
be used to approximate the desired maximum closed-loop input-to-
error ratio.

At gain crossover, the amplification ratio is the shortest distance
from the locus, coinciding with the crossover frequency, to the point
��1; j0�. Considering the phase margin in radians, McRuer et al. [1]
presented the amplification ratio as

����
e

i

����
!c

�
����

1

kMck

�����
1

2 sin�’M=2�
(8)

Van der Vaart derived an expression for the amplification ratio at
phase crossover [9]

����
e

i

����
!cp

� 1

1 � 1=GM
� 1

1 � �2=��!c�come
(9)

Figure 9 shows that Eq. (9) is the best approximation of the
maximum amplification ratio. Note that the frequency at the GM!cp
is always higher than the maximum amplification ratio frequency
and, consequently, Eq. (9) always underestimates the amplification
ratio. Nevertheless, it is remarkable how well the two-parameter
expression of Eq. (9) approximates the ratio. It might be informative
about the organization of the operator parameter adjustment (in terms
of the COM effective time delays and crossover frequency) with
respect to closed-loop error minimization. To gain a better under-
standing of Eq. (9), the COM effective time delay will be considered
in more detail.

D. Crossover Model Effective Time Delay

Operators achieve the best closed-loop performance by mini-
mizing Eq. (9). Several high-frequency phase-lag and lead

a) Effect of crossover frequency,     cω b) Effect of COM effective time delay,     eτ com

Fig. 6 Closed-loop input-to-error describing function spectra.
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contributions are lumped into the COM effective time delay at
crossover. Assuming that the PM is the most accurate control-
behavior representation at all frequencies, the open-loop phase lag
becomes

’�!� � �radYc � �d! � arctan
2�nm=!nm

1 � �!=!nm�2
!

� arctan �I!� arctan �L! (10)

For a small neuromuscular phase contribution at the center
frequencies, the arctangent can be assumed to be equal to its argu-
ment, that is, arctan x _�x. Furthermore, this term can be simplified
to 2�nm=!nm as �!=!nm�2 ! 0 when !nm 	 !c. As long as
�L!c > 1 and �I!c > 1, elegant ways to linearize the arctangents
are nonexistent. The phase-lag contributions at center frequencies
can be approximated by

�’center�!� _��radYc � !
�d � 2�nm=!nm�
� arctan �I!� arctan �L! (11)

From Eq. (11), a general expression of the COM effective time
delay can be derived:

�come _��d � 2�nm=!nm|����{z����}
limb-manipulator neuromuscular dynamics

� ���=2 � �radYc � arctan �L!c � arctan �I!c�=!c|��������������������������������������������{z��������������������������������������������}
equalization adjustment

(12)

For the three basic types of controlled element dynamics, the
COM effective time delays can now be defined. Note that, when the

Fig. 8 Geometric derivation of maximum input-to-error amplification
expressions from the open-loop Nyquist representation.

a) Noncrossover regressed power spectra b) Noncrossover regressed power spectrum integral

c) Crossover regressed power spectra d) Crossover regressed power spectrum integral

Fig. 7 Closed-loop error, input-to-error, and forcing-function spectra.

Fig. 9 Expressions for je=ijmax, closed-loop input-to-error and open-
loop magnitude responses.
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lead- and lag-time constants become very large, the COM effective
time delay approximates Eq. (14) for all dynamics:

Proportional control dynamics

�come _��d � 2�nm=!nm � 
�=2 � arctan �I!c�=!c|������������������{z������������������}
lag equalization

(13)

Rate control dynamics

�come � �spme _��d � 2�nm=!nm (14)

Acceleration control dynamics

�come _��d � 2�nm=!nm � 
�=2 � arctan �L!c�=!c|������������������{z������������������}
lead equalization

(15)

Now that the different contributions to the COM effective time
delay are known, the adjustment of the human operator to achieve
minimal mean-squared errors can be evaluated.

E. Generalizing the Cause of Crossover Regression

Minimization of the mean-squared error is obtained by a value
of the crossover frequency that exceeds the forcing-function band-
width, yet causing not toomuch resonance of forcing-function power
content at center frequencies. The magnitude of the two-parameter
equation, Eq. (9), should therefore remain within reasonable bounds.
This is effectively achieved by minimizing the COM effective time
delay, that is, minimize the pure time delay and both equalization and
neuromuscular contributions, Eqs. (13–15).

The pure time delay accounts for time delays due to perception,
cognition, conduction within the cortex, and neural conduction
from cortex to limb [1], but also depends on the type of controlled
dynamics and the nature of the task. Acceleration control, for
instance, requires the operator to estimate velocitywith an associated
time-delay penalty of roughly 14 ms, as given by the verbal
adjustment rules [1]. Time delays due to the nature of the task can
stem from various sources, such as additional time delays in divided
attention tasks [6].

Minimizing the equalization contribution is achieved by in-
creasing the lead �L and decreasing the lag �I . The limb-manipulator
neuromuscular dynamics are likewise adjusted to provide minimal
neuromuscular phase lag at crossover. Minimization of the neuro-
muscular contribution, however, depends to some extent on task-
related characteristics. That is, faster forcing-function signals
require faster and more agile stick maneuvers, resulting in lower
neuromuscular damping and less phase lag at crossover.

Because of physical and mental limitations, at some point, the
COM effective time delay cannot decrease anymore, that is, a further
reduction is beyond human capabilities. If a human operator wants
to reduce the resonance peak even further, he can only do so by
lowering the crossover frequency. To obtain lower mean-squared
errors, the operator must adopt a crossover-regressive control
strategy. Crossover regression can therefore be concluded to result
primarily from human limitations in sufficiently decreasing the
COM effective time delay.

F. Crossover Model Effective Time Delays in the 1965 STI
Experiment

The SPMeffective time delays in the STI experiment, illustrated in
Fig. 10, were obtained by fitting the SPM to experimental data [1]:

’Mrad
� �

2
� !c�come (16)

The COM and SPM effective time delays, measured in the STI
experiment, are illustrated in Fig. 11. The COM effective time delay
was calculated by rearranging Eq. (16) and substituting the crossover
frequency and phasemargin.‡‡Additionally, two distinct upper limits
on the COM effective time delay are included in Fig. 11.

The limits assume that, under normal tracking conditions, a phase
margin between 20 and 30 deg is desirable. Because an exact value of
the desired phase margin is unknown, limits for both a phase margin
of 20 and 30 deg are depicted. To calculate these limits, it was further
assumed that the baseline crossover frequency !c0 approximately
equaled the crossover frequency. Combining Eqs. (2) and (16) now
defines an upper limit on the COM effective time delay as a function
of forcing-function bandwidth. To prevent crossover regression,
while maintaining the selected stability margin, the COM effective
time delay should remain above or at the limit.

For acceleration control, the 2:5 rad=s bandwidth condition is
below both limits, although the 30 deg phase-margin limit is close.
Indeed, McRuer et al. [1] found no crossover regression for this
condition. Crossover regression, together with an increase in COM
effective time delay, was found with acceleration control and
4:0 rad=s forcing-function bandwidth. The SPMeffective time delay
in Fig. 9 decreases for this condition. This leads to two observations:
First, the increase inCOMeffective time delaywas due to an increase
in the equalization contribution, associated with a decrease in the
crossover frequency, Eq. (15). Second, Fig. 10 shows that crossover
regression does not prevent the operator from exploiting those
forcing-function characteristics that allow a further decrease in SPM
effective time delay.

Fig. 10 Variation of effective time delay with forcing-function band-
width and controlled element dynamics (reproduced from McRuer and
Jex [13]).

Fig. 11 COM and SPM effective time delays of the 1965 STI
experiment [1] and two upper limits.

‡‡Phase margins and crossover frequencies obtained from McRuer et al.
[1], Table 8, p. 149.
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Based on the analyses and observations, it was hypothesized that
the COM effective time delay could not decrease sufficiently to
reduce the magnitude of Eq. (9) sufficiently and the crossover
frequency decreased instead. To investigate the adjustment of the
COM effective time delay, explore the adjustment, between-subject
variation, and accuracy of PM parameters in relation to crossover
regression, an experiment was conducted.

IV. Experiment

The experiment was designed with three objectives in mind: 1) To
replicate the 1965 STI experiment as well as possible, to obtain
accurate, established reference values of manual control behavior,
2) to explore the COMeffective time delay just before the occurrence
of crossover regression, and 3) to study the trends, between-subject
variation, and accuracy of the PM parameter estimates in both
regressive and nonregressive conditions.

A. Experiment Setup and Procedure

To replicate the 1965 STI experiment, a compensatory tracking
task with a central foveal display was set up in our human-machine
systems laboratory (Fig. 12). The controlled dynamics were a pure
acceleration control Kc=�j!�2 selected for two reasons. First, for
these dynamics, the STI experiment results yield reference values of
control behavior in conditions where crossover regression did and
did not occur. Second, crossover regression has primarily occurred
with this type of dynamics [8–10]. The controlled dynamics gainKc
was fixed at 5 in:=in:

The control manipulator was an electrohydraulic, servo-
controlled, passive sidestick with 1 deg of freedom (lateral). The
moment arm was 9 cm. The spring-restrained sidestick dynamics
were similar to the STI experiment; the torsional stiffness Ks was
3:5766 Nm=rad, while torsional dampingBs andmassMs were kept
as low as possible at 0:08 Nm s=rad and 0:01 kgm2, respectively.

Participants were seated in an adjustable chair in a low-noise,
darkened room. They were asked to keep the eye-to-display distance
constant at approximately 29 in. Participants were presented a one-
dimensional display, Fig. 13, showing a stationary reference (cross)
fixed at the center of the screen and a target (circle) that moved
laterally. The stationary reference and target were displayed in green
on a black background. The display size and layout exactly matched
the STI display; the frame of reference was inside out, implying that
the reference (cross) had to be directed toward the target (circle).

The experiment comprised two phases:
1) Training phase. Participants were allowed to become

accustomed to the experimental apparatus and tasks. The conditions
were divided into four categories: easy, baseline, medium, and
difficult; these will be further discussed later. For each category, it
was determined what type of control strategy yielded the lowest
normalized tracking error �e2=�2i . At the end of this phase, reasonable
levels of stationary tracking performance were obtained using the
selected control strategy, expressed in �e2=�2i and also control activity
�u2. Participants performed an average of 120 training trials.
2) Measurement phase. The data of five successive runs for each

condition were recorded for evaluation.
The experimental design consisted of randomizing all conditions.

To minimize changes in the control strategy during measurement
runs, each condition was announced before each run, so that the
participant could associate the nature of the run with the selected
control strategy in the training phase.

B. Independent Variables

The independent variable in the experiment was the forcing
function. Five distinct forcing-function conditions were used (see
Fig. 14).

The reference conditions were the three STI spectrum forcing
functions with 1.5, 2.5, and 4:0 rad=s bandwidth (conditions A, B,
and D, respectively), extendedwith two additional conditions (C and
E). To prevent fatigue, to obtain high levels of stationary control
behavior, and to maintain sufficient frequencies without power
around the low-frequency sinusoids, the runs lasted 108 s instead of
the 240 s in the STI experiment. Hence, the number of periods of the
original STI forcing functions had to be divided by approximately
two. The periods were selected as integer multiples of the base
frequency 2�=T, but were not allowed to be integer multiples of each
other [23]. Our frequencies therefore only approximated those of the
STI experiment (see Table 1).

The first additional condition, C, was a forcing function with
bandwidth 3:0 rad=s. An additional sinusoidwas added to obtain this
bandwidth; to maintain an approximately equal logarithmic fre-
quency separation, some periods were slightly changed. Condition C
was added for two reasons: first, to provide an insight into human
control behavior, and in particular into the crossover model effective
time-delay just before crossover regression is expected to occur.

Fig. 12 Experimental setup showing display and side stick.

Fig. 13 Display layout equivalent to the STI display [1].

a) Cond. A (STI 6-4) b) Cond. B (STI 7-3) c) Cond. C e) Cond. Ed) Cond. D (STI 8-2)
Fig. 14 Definition of power spectra magnitudes. All forcing functions are normalized to �i of 0.5 in.
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The second reason is to investigate the between-subject variability in
the occurrence of crossover regression at 3:0 rad=s.

The second additional condition, E, was a forcing function with a
higher level of difficulty than condition D (STI 8-2). This was
achieved by adding an additional sinusoid to condition D, just before
the 4:0 rad=s bandwidth frequency. The additional sinusoid was
inserted close to the maximum closed-loop input-to-error amplifi-
cation frequency (see Fig. 6). This condition served to better
investigate the trends in human control behavior in regressive
conditions.

The categories of the conditions were determined based on their
expected difficulty level: easy (A), baseline (B), medium (C), and
difficult (D and E). In the remainder of this paper, the five forcing-
function conditions are identified by their bandwidth. Condition E
differs from condition D only by addition of a ‘�’ symbol to the
bandwidth, that is, 4:0�.

C. Participants and Instructions

Five participants were selected primarily on the basis of having
excellent tracking skills to match the performance of the STI
experiment population. The participants were instructed to keep the
reference as close as possible to the target, i.e., to minimize the error
e. Their motivation was enhanced by actively keeping track of
personalmean-squared error records and by provoking a competition
among the participants.

For each 108-s run, 10 s run-in time and 2 s run-out time were
added. Of the 10 s run-in time, the first 5 s featured a ramp-shaped
fade-in to smoothen the participant’s transition from inactivity to
active tracking.

D. Limitations in Replicating the 1965 STI Experiment

Some aspects could not be exactly replicated. Whereas the STI
experiment featured an analogue cathode ray tube display [13], we
used a low-latency, high-resolution liquid crystal display. Second, no
mention is made in the 1965 report of the stick grip. A later 1974
STI report [7] mentions an experiment very similar to the 1965
experiment, in which the stick was “grasped between thumb and
forefinger.” In our experiment, the stick was grasped with the full
hand. Third, whereas the STI participants had extensive piloting
experience, none of our participants did.

E. Human Control-Behavior Identification

The operator describing function was identified from the experi-
mental data using two different nonparametric techniques. In
addition, the precision model parameters were estimated using a
parametric identification technique. The identification methods are
briefly reviewed next.

1. Nonparametric Identification

Two methods were used to obtain describing functions from the
measured data. First, the Fourier coefficients (FC) method was

applied to obtain an estimate of the frequency response function at
the frequencies of the forcing-function sinusoids [1,23,24]; at these
frequencies, high signal-to-noise ratios are feasible. Second, the
auto-regressive with exogenous inputs model (ARX) method was
used [25]. This method fits linear polynomials to time-domain
signals by solving an analytical least-squares criterion and yields an
estimate of the frequency response function at all frequencies
[26,27].

2. Parametric Identification

The maximum likelihood estimation (MLE) method was used to
estimate the precision model parameters [22,28,29]. The main
advantages of this method are that the variance of the parameter
estimate achieves the Cramér-Rao lower bound (CRLB) (that is,
it is asymptotically efficient), and also that the estimate becomes
unbiased (i.e., it is asymptotically unbiased), both when the
observation time approaches infinity [22,28]. The principle is to find
the joint-probability density function for predicted error " (the
difference between the measured and modeled control signal) that

makes the parameter estimate �̂ “most likely” by maximizing the
likelihood function:

L��� � f�"1; "1; . . . ; "N; �� (17)

The parameter vector �̂
mle

that maximizes the likelihood function is
defined by

�̂ mle � argmax
�

ln L��� � argmin
�

1

2�2"

XN

i�1
"2i (18)

The convex Gauss–Newton optimization method used to find the
maximum log likelihood unfortunately suffered from local minima.
To enhance the probability of finding the global minimum, multiple
initial conditions were used. When all the initial conditions con-
verged to the same minimum, a global minimum was assumed.

Ameasure for the amount of information available in the data set to

compute the parameter estimate �̂
mle

can be obtained by calculating
the Fisher information matrix. The inverse of this matrix defines the
Cramér-Rao lower bound, that is, the minimum achievable variance

of estimate �̂
mle

.

3. Relative Remnant and Linear Correlation

The relative remnant �2a is a measure for the linearity and model
validity [1]. It describes how well the linear precision model fits the
data; it ranges from zero to one, where one corresponds to perfectly
linear correspondence. It can be calculated by

�2a � 1 � � �u � �um�2
�u2

� 1 � �n2

�u2
(19)

with um as the simulated control signal obtained with the PM.

Table 1 Definition of forcing-function periods and harmonic frequencies

Conditions A, B, and D
STI forcing functions

Condition C
Bandwidth frequency sinusoids

Condition E
High-frequency sinusoids

j Period, – !j, rad=s STI !j, rad=s j Period, – !j, rad=s j Period, – !j, rad=s

1 3 0.175 0.157 1 3 0.175 1 3 0.175
2 5 0.291 0.262 2 5 0.291 2 5 0.291
3 8 0.465 0.393 3 8 0.465 3 8 0.465
4 11 0.640 0.602 4 11 0.640 4 11 0.640
5 17 0.989 0.969 5 17 0.989 5 17 0.989
6 26 1.51 1.49 6 26 1.51 6 26 1.51
7 43 2.50 2.54 7 37a 2.15 7 43 2.50
8 71 4.13 4.03 8 53 3.08 8 67 3.90
9 131 7.62 7.57 9 83 4.83 9 71 4.13
10 233 13.56 13.8 10 137 7.97 10 131 7.62

11 233 13.56 11 233 13.56

aBold font indicate the differences with respect to the STI forcing-function periods.
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The squared correlation coefficient �2, also known as the
coherence squared, is the ratio of the linearly correlated operator
control signal power and the total control signal power [1]:

�2�!� � j�eu�!�j2
�ee�!��uu�!�

(20)

A larger correlation coefficient implies a lower remnant portion at the
frequency under consideration; it ranges between zero (only
remnant) and one (no remnant).

A typical open-loop estimate, including values for �2a, is shown in
Fig. 15.

F. Dependent Measures

Several metrics for human behavior were investigated. Time-
domain performance was expressed using the mean-squared values
of the error, control signal, and control signal derivative. Frequency-
domain behavior metrics were the crossover frequency, phase
margin, and linear precision model parameters. The accuracy of the
parameter estimates were expressed in the normalized averaged
Cramér-Rao lower-bound values. Metrics used for the level of
nonlinearity in operator behavior included the squared linear
correlation coefficient �2, the mean-squared remnant �n2, and the
relative remnant �2a.

G. Hypotheses

Five hypotheses were defined. The first three were based on
findings in previous experiments, and the remaining two originate
from the theoretical analysis of Sec. III.

First, after the occurrence of crossover regression, the between-
subject variability is hypothesized to increase in terms of the
crossover frequency (1a), as well as the estimated PM para-
meters (1b). Second, the accuracy of the PM parameter estimates,
expressed in normalized averaged CRLB values, is hypothesized to
decrease for regressed conditions. Third, the linearity in operator
control behavior is hypothesized to decrease when crossover
regression occurs. Fourth, the COM effective time delay is hypo-
thesized to increase after the occurrence of crossover regression.
Fifth, the maximum closed-loop input-to-error ratio is hypothesized
to decrease after crossover regression occurs.

V. Results

The statistical significance of the effects of the forcing functions
on the dependent measures was determined by a repeated-measures
analysis of variance (ANOVA). AnANOVAmakes four assumptions
regarding the underlying data set: 1) normality, 2) homogeneity of
variance, 3) sphericity, and 4) interval scale. Because only one group
of participants was considered, the assumption of homogeneity of
variance was always true. Although an ANOVA can be quite robust

against violations of the normality assumption [30,31], the
nonparametric Friedman ANOVA was used instead when the data
appeared to be nonnormal.

In the figures that follow, the 4:0� condition is offset from
the 4:0 rad=s condition on the abscissa. The offset marks the
hypothesized increase in task difficulty.

A. Time Histories

Time histories of the closed-loop input (equal to reference i) and
output (equal to controlled element response y) are illustrated in
Fig. 15, for both regressed and nonregressed participants. Typical
tracking performance in following the 2:5 rad=s forcing function is
illustrated by participant 2: the reference could be tracked reasonably
well. The time-history of the 4:0� rad=s forcing-function reference
was clearly more volatile due the additional power at center
frequencies. In response, all participants decreased their crossover
frequency.

Generally, two types of crossover-regressive strategies were
adopted by the participants, typical examples are shown in Fig. 16.
Participant 5 regressed the crossover frequency to 1:1 rad=s
and completely ignored the high-frequency parts of the signal.
Participant 4 tried to follow the high-frequency input more closely
and adopted a slightly higher crossover frequency, 1:7 rad=s. The
latter participant was unable, however, to sufficiently compensate for
his inherent time delay, and his responsewas almost continuously out
of phase.More results will be discussed next, in the same order as the
hypotheses were defined.

B. Hypothesis 1: Between-Subject Variability

1. Time-Domain Metrics

The means and 95% confidence intervals (CI), adjusted for
between-subject variability, of time-domain tracking performance
are given in Fig. 17. The ANOVA results are given in Table 2.
Reference values of the mean-squared (MS) control deflection could
not be found in the 1965 STI report; therefore, values from an almost
identical STI experiment reported in 1966byWasicko et al. [32]were
taken as a reference. Note, however, that the latter experiment
featured only one participant.

An almost linear increase in the normalized mean-squared error
can be observed in Fig. 17a.Mean-squared control activity, Fig. 17b,
increases up to 3:0 rad=s and then decreases again. The trend in the
control deflection derivative, Fig. 17c, is quite similar. All effects
were significant (see Table 2).

The values found are very similar to those reported by McRuer
et al. [1], providing confidence that we were indeed successful in
replicating their experiment. Marked exceptions are the worse
performance of our participants in reducing the NMSE for the
4:0 rad=s condition and the much lower MS control activity for the

Fig. 15 Open-loop dynamics estimates (1:5 rad=s condition A,
participant 1).

Fig. 16 Typical time histories for regressed and nonregressed
participants.
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same condition. Recall, however, that the value reported byWasicko
et al. [32] belonged to just one participant.

The individual NSME and MS control deflections, including
group means and standard deviations, are shown in Figs. 18 and 19,
respectively. For the 3.0 and 4:0 rad=s conditions, the between-
subject variability in NMSE slightly increases. The variations in
MS control deflection are much larger, especially for the 3.0 and
4:0 rad=s conditions. Although MS control activity was consid-
erably higher for participants 1 and 4, their NMSE performance was
about the same (participant 4) or only slightly better (participant 1).

2. Frequency-Domain Metrics

The crossover frequencies, phase margins, and closed-loop
damping ratio are shown in Fig. 20. TheANOVA results can be found
in Table 2.

The crossover frequency increases slightly for bandwidths up to
2:5 rad=s and then becomes considerably smaller. Apparently,
crossover regression occurred first in the 3:0 rad=s condition. The
phase margin increases almost proportionally with forcing-function
bandwidth, Fig. 20b. The closed-loop damping, Fig. 20c, remains at
approximately 0.2 for the 1.5 and 2:5 rad=s conditions and then
increases to roughly 0.45 for both the 4.0 and 4:0� rad=s
conditions. These effects were all significant.

As compared to the original STI experiment, the crossover
frequencies were considerably higher for the 1.5 and 2:5 rad=s
conditions; the phase margin shows only slight differences. The
trends in the data, however, were exactly the same in our experiment.

Notice that the trends in crossover frequency and MS control
deflection are similar, a significant effect (correlation coefficient
0.9285, p� 0:0227); the same holds when comparing the NMSE
and phase-margin trends, an effect that is not significant (correlation
coefficient 0.7240, p� 0:1667). This indicates that performance in
terms of minimizing error is related to phase margin, rather than
crossover frequency. The latter is a better (but not significant)
predictor of the MS control activity.

Figure 21 shows the average crossover frequencies of each
individual participant, with group means and standard deviations.
Examination of the individual crossover frequencies reveals
considerable variations. The first regression can be noticed at the
3:0 rad=s condition, for participants 2 and 5. Participant 3 regresses
at the 4:0 rad=s condition. Participants 1 and 4 also regress at this
condition, but to a lesser extent; they further reduce their crossover
frequency at the 4:0� condition. Overall, the between-subject
variability in crossover frequency increases after the 2:5 rad=s

condition. This observation supports hypothesis 1(i); between-
subject variability in crossover frequency increases when crossover
regression effects start to occur.

Regarding the crossover frequencies beyond the 3:0 rad=s
condition, two groups can be distinguished: participants 1 and 4, who
maintain a relatively high crossover frequency (between 1.7 and
2:4 rad=s), and participants 2, 3, and 5, who adopt a lower crossover
frequency (approximately 1:1 rad=s). The variability in crossover
frequency is confined to a tight band for the 2:5 rad=s condition,
followed by the 1:5 rad=s and 4:0� conditions.

a) Normalized mean-squared 
error

b) MS control deflection c) MS control derivative

Fig. 17 Means and 95% CI, corrected for between-subject variability.

Table 2 Results of repeated-measures ANOVA on performance and frequency-domain behavior metrics, where �� is highly
significant (p< 0:01) and � is significant (0:01 � p< 0:05)

Independent variable Dependent measures

Time-domain performance Frequency-domain behavior

�e2=�2i �u2 !c ’M �CL

�2(4) Sig. �2(4) Sig. F(4, 16) Sig. F(4, 16) Sig. �2(4) Sig.
Bandwidth 20.0a,b �� 15.520a �� 53.705 �� 12.395 �� 10.4a,b �
aSphericity assumption not met, Friedman’s ANOVA used instead.
bSphericity assumption not met.

Fig. 18 Individual NMSE, means, and standard deviations.

Fig. 19 Individual MS control deflection, means, and standard
deviations.
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3. Precision Model Parameter Estimates

The precision model parameters, means, and 95% confidence
intervals are illustrated in Fig. 22; ANOVA results are summarized
in Table 3. With double integrator dynamics, no lag equalization is
needed, and the lag-time constant �I in Eq. (3) was set to zero.

The following trends can be observed from Fig. 22. The operator
gain Kp is approximately the same (0.52) for the 1.5 and 2:5 rad=s
conditions, then decreases considerably to an again approximately
constant level (0.15) in the 4.0 and 4:0� rad=s conditions. The pure
time delay �d decreases almost proportionally with forcing-function
bandwidth and becomes even slightly lower in the 4:0� rad=s
condition. These effects are indeed significant (see Table 3).

The lead-time constant �L increases for higher forcing-function
bandwidths and then drops again for the 4:0� condition. Overall, the
variability in lead generation is high and, as a result, no significant
effects of bandwidth were found.

Inspection of the individual lead-time constants in Fig. 23 provides
more information on the adjustment taking place. Participants 2, 3,
and 5 show a very similar adaptation, as they all increased their lead
up to the 3:0 rad=s condition and then decreased their lead again for
the 4.0 and 4:0� conditions. Participant 1 dramatically increased his
lead time for both the 4:0 rad=s and 4:0� conditions. Participant 4
maintained an approximately equal lead time of 1.3 s for all con-
ditions except the 4:0 rad=s condition, where lead was very much
higher.

Tentatively, the sudden increase in lead time for participants 1 and
4, yielding smaller effective time delays, can be interpreted as a “last
attempt” of these participants to maintain tracking performance,
resisting a total regression of the crossover frequency, as happened
with the other three participants. But as mentioned earlier, it did not
help them very much, as their NMSE performance was about the
same or only slightly better.

The neuromuscular damping �nm reduces almost linearly for
higher bandwidths, a significant effect. Although, clearly, a reduction
is apparent in the neuromuscular frequency !nm, this effect was not
significant. This is probably due to the fact that between-subject
variations were higher in the regressive conditions. Recall that in
hypothesis 1(ii) we stated that the between-subject variability in the
precision model parameters increases after the occurrence of
crossover regression. From the parameters discussed, it is clear that
this hypothesis only holds for the operator lead time and, to a lesser
extent, the neuromuscular frequency.

C. Hypothesis 2: Accuracy of the Precision Model Parameter
Estimates

Averaged Cramér-Rao lower bounds, normalized to the parameter
magnitudes, are shown in Fig. 24. Note that a high value indicates
that more information was available in the data to estimate that
particular parameter, and that a more accurate parameter estimate
could be obtained.

a) Crossover frequency b) Phase margin c) Closed-loop damping

Fig. 20 Means and 95% CI, corrected for between-subject variability.

Fig. 21 Individual crossover frequencies.

a) Operator gain b) Lead time constant c) Pure time delay d) Neuromuscular
 bandwidth

e) Neuromuscular
 damping

Fig. 22 Means and 95% CI, corrected for between-subject variability.

Fig. 23 Individual lead-time constants.
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The figure illustrates that the accuracy in estimating the gain Kp
remained approximately equal. The accuracy of the other parameters
diluted in conditions 4 and 5 where participants regressed their
crossover frequency. The estimates of pure time delay �d, neuro-
muscular frequency !nm, and neuromuscular damping �nm all have

lower normalized CRLB values. Generally speaking, these obser-
vations support hypothesis 2: the accuracy of the PM parameter
estimates decreases when crossover regression occurs.

The accuracy of the lead time shows a different effect: for the
4:0 rad=s condition, the accuracy was severely degraded, whereas
for the 4:0� rad=s condition, the accuracy was approximately
the same as for the 1.5 and 2:5 rad=s conditions. Note that this
strengthens the observation that, in the 4:0� condition, participants
again adopted a relatively fixed strategy, as in the lower forcing-
function bandwidth conditions, whereas apparently in condition
4:0 rad=s, there was still considerable variation in selecting the
right strategy to cope with the high-frequency forcing-function
components.

D. Hypothesis 3: Control-Behavior Linearity

Themeans and 95%confidence intervals of the relative remnant�2a
determined using both a nonparametric ARX fit and a parametric
MLE fit are shown in Figs. 25a and 25b, respectively. Both methods
show an increase between the 1.5 and 3:0 rad=s conditions and a
marked decrease beyond this condition. For the 4.0 and 4:0�
conditions, the lowest values of the relative remnant were found. The
effect for the MLE relative remnant was not significant; a significant
effect was found for the ARX remnant (see Table 4).

The means and 95% confidence intervals of the mean-squared
remnant intensity �n2, computed only for the MLE fit, are shown in
Fig. 25c. On average, the remnant intensity was approximately the
same for all conditions.

Individual values of the MS remnant intensity, group means, and
standard deviations are shown in Fig. 26. Remnant was notably
larger for participant 1 in comparison to the other participants. No
clear trends regarding a potential adjustment of the remnant intensity
for different forcing-function bandwidths can be found.

Figure 27 shows the linear correlation coefficients �2 for
participants 1, 4, and 5. At center frequencies, operators behaved
almost linearly: �2 � 1. At low frequencies, linearity degraded and a
small amount of linearity was also lost at higher frequencies.

For all participants, the lowest linear correlationswere found in the
4.0 and 4:0� rad=s conditions. Combinedwith the relative remnant
findings, this supports hypothesis 3: linearity in operator control
behavior reduces when crossover regression occurs.

E. Hypothesis 4: Operator Time Delays

An overview of the three definitions of operator time delays
(Sec. III.A) is given in Fig. 28. The ANOVA results, summarized in
Table 5, indicate that the effects of the forcing-function bandwidth on
the three time-delay definitions were all significant.

The PM pure delay (Fig. 28a) and the SPM effective time delay
(Fig. 28b) both decrease proportionally with forcing-function
bandwidth. The PM pure delay for the 4:0� rad=s condition is
approximately 30 ms lower than the delay for the 1:5 rad=s band-
width. Recall that the difference between the SPM effective time
delay and the PM pure time delay is caused by the neuromuscular
contribution �nm=!nm [see Eq. (15)].

Figure 28c shows that the COM effective time delay decreases
almost linearly in the 1.5, 2.5, and 3:0 rad=s conditions. It then
increases sharply in the conditions where participants exhibited
crossover regression, the 4.0 and 4:0� rad=s bandwidth condi-
tions. This supports hypothesis 4; the COM effective time delay
increases after the occurrence of crossover regression. The increase
originates from the equalization contribution [see Eq. (15)]. Note that
the COM effective time-delay values deviate slightly but still
compare very well to those reported by McRuer et al. [1].

F. Hypothesis 5: Closed-Loop Input-to-Error Spectrum

The closed-loop input-to-error spectra of participants 3 and 4, for
all conditions, are shown in Fig. 29. A pronounced difference can be
seen between the regressive conditions (4.0 and 4:0� rad=s) and
all other conditions. Here, the input-to-error peak decreases and

Table 3 Results of repeated-measures ANOVA on PM parameters, where �� is highly significant (p< 0:01), � is significant
(0:01 � p< 0:05), and— is not significant (p � 0:05)

Independent variable Dependent measures

Kp �L �d !nm �nm

F(4, 16) Sig. F(4, 16) Sig. F(4, 16) Sig. F(3.28, 12.75) Sig. F(4, 16) Sig.
Bandwidth 22.19 �� 2.427 — 3.078 � 2.14a — 5.689 ��
aSphericity assumption not met, Greenhouse–Geisser [33] correction applied.

Fig. 24 Averaged values of the Cramér-Rao lower-bound normalized
to the average parameter magnitude.

a) Relative remnant (ARX) b) Relative remnant (MLE) c) Mean squared remant 
intensity (MLE)

Fig. 25 Means and 95% CI, corrected for between-subject variability.
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stretches over a larger frequency range, a direct consequence of the
reduction in operator gain. This decrease in maximum closed-loop
input-to-error ratio is achieved at the cost, however, of a reduction in
the low-frequency error suppression.

Themaximumpeak in input-to-error of participant 3first increases
(from the 1:5 rad=s to the 3:0 rad=s condition) and then suddenly
becomes much smaller after he regressed his crossover frequency.
Participant 4 shows a more gradual decrease of the maximum peak
input-to-error, already from the 1:5 rad=s to the 3:0 rad=s condi-
tions, followed by an also quite smooth reduction to the 4:0 rad=s
and 4:0� conditions. In the latter reduction, however, the low-
frequency error suppression became much worse.

Figure 30 shows the maximum closed-loop input-to-error
approximation je=ij2max. Between the 1.5 and 2:5 rad=s conditions, it
slightly increases. Here, apparently, more effective error suppression

at center frequencies is achieved by a highermaximum input-to-error
amplification ratio (see Fig. 29a). Starting at the 3:0 rad=s condition,
however, the maximum closed-loop input-to-error amplification
ratio reduces significantly. This result supports hypothesis 5, which
stated that the maximum closed-loop input-to-error ratio will
decrease after the occurrence of crossover regression. After the
decrease between the 2.5 and 4:0 rad=s conditions, the ratio of the
4:0� rad=s condition is approximately the same as for the
4:0 rad=s condition. When considering the decrease in the COM
effective time delay between the 1.5 and 3:0 rad=s conditions, the
decrease in maximum input-to-error ratio beyond the 2:5 rad=s
condition can only be attributed to a reduction in crossover frequency
[recall Eq. (9)].

VI. Discussion and Recommendations

In this section, we will discuss the theoretical and experimental
results and provide recommendations for future work. We aim to
answer the two main questions posed at the start of the paper. First,
how do human operators adjust their settings (e.g., neuromuscular
system, equalization), what is the between-subject variability, and
what about the linearity of their control behavior when crossover
regression occurs? Second, what is the general cause of crossover
regression, and how can we better predict it?

A. Operator Control Behavior in Regressed Conditions

1. Between-Subject Variability

The frequency at which crossover regression occurs was found to
depend on the participant. Generally speaking, two types of
regression could be observed.Fig. 26 Individual mean-squared remnant intensity.

a) Participant 1 b) Participant 4 c) Participant 5

Fig. 27 Squared correlation coefficient for three participants and all conditions.

a) PM pure time delay b) SPM effective time delay c) COM effective time delay

Fig. 28 Means and 95% CI, corrected for between-subject variability.

Table 4 Results of repeated-measures ANOVA on linearity and remnant metrics, where � is significant
(0:01 � p< 0:05) and — is not significant (p � 0:05)

Independent variable Dependent measures

�2a (MLE) �2a (ARX) �n2

F(1.3, 5.1) Sig. F(4, 16) Sig. F(4, 16) Sig.
Bandwidth 3.326a — 3.375 � 0.99 —

aSphericity assumption not met, Greenhouse–Geisser [33] correction applied.
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Three of our five participants reduced their crossover frequency
considerably (two at the 3:0 rad=s condition, one at the 4:0 rad=s
condition). These three participants showed very similar adaptation
effects, increasing their lead-time constant from the 1.5 to 3:0 rad=s
conditions, then a sudden decrease in lead and crossover frequency.

The two other participants tried to compensate for the forcing-
function resonance in the 4:0 rad=s condition through a dramatic
increase in their lead time. They regressed too, however, at the most
difficult 4:0� condition. Although their crossover frequencies and
MS control activity were markedly higher, their NMSE performance
was the same or only slightly better. Clearly, their investment in
generating lead did not pay off very well.

As a result of the different strategies, the between-subject variation
in crossover frequency increased considerably. Whereas for the
regressive conditions, participants could be divided in two groups,
these groups were not apparent in the nonregressive conditions.

The largest between-subject variations were found for the forcing
functions that bring participants to the verge of crossover regression:
the 3.0 and 4:0 rad=s conditions. In the conditions where either
none of the participants (1.5 and 2:5 rad=s conditions) or all of the
participants (the 4:0� condition) regressed their crossover
frequency, between-subject variability was relatively small.

The difficulties that occurred in the regression conditions were
also reported by the participants. Overall, they commented that it was
more difficult to find and, in particular, to hold on to a successful
control strategy for the regressive conditions. After the completion of
a typical 4.0 or 4:0� rad=s run, participants often had no clue about
their performance, whereas a fairly accurate judgment could be given
in the other conditions.

2. Parameter Adjustment

The PM parameters, and especially the lead equalization and
neuromuscular bandwidth, showed more variation in the regressive
conditions. To reduce themaximum input-to-errormagnitude, higher
phase margins are beneficial. Then, in any operator attempt to
generate more phase, the linear precision model parameters allow for
a number of, possibly simultaneously occurring, adaptations [see
Eq. (15)].

First, the pure time delay �d and neuromuscular damping �nm can
be decreased, which is indeed what we found in our experiment.
WhereasMcRuer et al. [1] assumed the pure time delay �d to befixed,

our results show a significant and almost proportional reduction (in
total 30ms)when forcing-function bandwidth increased. It is unclear
whether this is an estimation artifact or an operator adjustment that is
not yet understood.

Second, the neuromuscular frequency!nm could be increased; the
opposite was found, however, in our data. It could well be that a
simultaneous decrease of �nm and increase in !nm is a difficult
adaptation for the neuromuscular system. Perhaps the strategy of
reducing the damping with a decrease of neuromuscular frequency,
as found in this experiment, is somehow the best or easiest way to
adapt the neuromuscular dynamics to reduce equivalent time-delay
effects. This is mere speculation, however, and more research is
needed to validate this hypothesis.

The contribution of the lead time to the effective COM time delay
is small for largevalues of �L and largevalues of!c [Eq. (15)]. Hence,
it is beneficial to have high lead values, and this is indeed what we
found for the two participants that resisted crossover regression the
most, participants 1 and 4. These participants show a large increase in
their lead-time constant for the 4:0 rad=s condition, as compared to
the lower-bandwidth conditions, in an attempt to decrease �come . Note
that, even when there is no lead (not possible for double integrator
dynamics), it would still beworthwhile to have a crossover frequency
that is as high as possible.

3. Comparison to the 1965 STI Experiment

For the nonregressive 1.5 and 2:5 rad=s conditions, our results
correspond very well to those reported in McRuer et al. [1]. Our
participants exhibited higher crossover frequencies, but similar
performance in the 1.5 and 2:5 rad=s conditions. This is in line with
the theoretical mean-squared error analysis: higher crossover
frequencies do not necessarily result in better performance. In fact,
the NSME was found to correspond much better with phase margin,
whereas crossover frequency was a better predictor of MS control
activity. For the 4:0 rad=s condition, our participants had more
difficulty in suppressing the NMSE as compared to the STI
participants.

4. Linearity in Operator Control Behavior

Overall, higher levels of nonlinear effects and corresponding
remnant levels in operator control behavior were observed in the

Table 5 Results of repeated-measures ANOVA on human-operator time delays, where � is significant
(0:01 � p< 0:05)

Independent variable Dependent measures

�come �spme �d (from Table 3)

F(1.42, 5.67) Sig. �2�4� Sig. F(4, 16) Sig.
Bandwidth 6.583b � 10.88a � 3.078 �
aNormality assumption not met, Friedman’s ANOVA used instead.
bSphericity assumption not met, Greenhouse–Geisser [33] correction applied.

Fig. 29 Closed-loop input-to-error spectra.
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regressed conditions. As a consequence, the accuracy in the non-
parametric ARX fit and in the PM parameter estimates decreased.

The goodness of fit, described by the relative remnant, for both
ARX and MLEmethods shows a marked decrease for the regressive
4.0 and 4:0� rad=s conditions. The correlation coefficient �2 was
lowest for these conditions, also at the center frequencies, whereas in
the other conditions, the operator behaved almost linearly in this
important frequency region. The Cramér-Rao results indicate that,
whereas the pure time delay could be estimated quite accurately, the
operator lead time was the most difficult parameter to estimate,
especially in the 4:0 rad=s condition.

Note that, generally speaking, the degraded accuracy of the
estimated parameters for the regressive 4.0 and 4:0� rad=s condi-
tions might be explained by the nature of crossover regression. Here,
the operator ignores large parts of the forcing function, in particular
the high-frequency content; therefore, less information regarding
operator control behavior is available in the data at these high-
frequencies, resulting in poor signal-to-noise ratios and deteriorating
parameter estimation accuracy. Clearly, the frequency-domain
identification techniques used in this investigation have problems in
coping with these conditions; other techniques might yield better
results.

B. Causes of Crossover Regression and Prediction of the
Phenomenon

1. Causes

The increase in closed-loop damping between the 3.0 and
4:0 rad=s conditions exemplifies the principle of crossover regres-
sion: participants achieved better error suppression by “slowing-
down the system response,” a strategy to reduce the closed-loop
forcing-function resonance at center frequencies, that is, the
frequencies near the crossover region.

The experiment results clearly show that, with larger forcing-
function bandwidths, participants try to reduce their time delay,
which is always advantageous from the perspective of lowering the
maximum input-to-error ratio [Eq. (9)]. But then, first at the
3:0 rad=s condition (for three participants), and also at the 4:0 rad=s
condition (for the other two participants), the time-delay reduction
was insufficient. The excessive forcing-function resonance at center
frequencies could then only be reduced by decreasing the crossover
frequency, which in turn led to a marked increase in the COM
effective time delay [see Eq. (15) and Fig. 28].

2. Prediction

In our experiment, similar to the 1965 STI experiment, crossover
regression occurs for the higher-bandwidth forcing-function con-
ditions. As has been discussed extensively in Sec. III, reducing the
operator’s effective time delay is always advantageous, whereas a
reduction in crossover frequency depends on the placement (in
particular, high) frequencies of the forcing function. In this respect,
an analysis of the variation in NMSE as a function of crossover
frequency, yielding a figure like Fig. 5, can provide an early insight
into whether crossover regression may or may not occur.

In our experiment, operator control behavior considerably
changed in the 4:0� condition as compared to the 4:0 rad=s condi-
tion. Note that these two forcing functions had the same bandwidth
and also the same signal power. Apparently, positioning another

sinusoid component in the range of the center frequencies, while
keeping bandwidth and signal power the same, forces operators to
adapt their control behavior considerably. Their NMSE got worse,
MS control activity (and rate) decreased, crossover frequency and
phase margin reduced; closed-loop stability remained more or less
the same.

Regarding the PMparameters, the pure time delay, neuromuscular
damping, and, in particular, the lead-time constant decreased
considerably, whereas pilot gain increased. Additionally, behavior
became more nonlinear, as for this condition the lowest relative
remnant and linear correlations were found for lower values of the
remnant power.

Clearly, more efforts are needed to investigate the effects of
forcing-function definitions on operator behavior, and results of a
first investigation have been promising [34].

C. Recommendations

Based on the preceding analyses, the following recommendations
are made.

First, in our experiment, the conditions were randomized in blocks
and participants had to adjust their control strategy between runs.
Repeating each condition a number of times within each block could
have resulted in better and perhaps also a less variable adjustment of
the control strategy in the conditions where crossover regression
occurred.

Second, it is clear that crossover regression should be avoided
when one intends to use linear models and keep the variability in
human control behavior within bounds. Our experiment showed that
human control behavior becomes much more variable, and different
strategies to cope with the forcing-function resonance start to
emerge. Hence, to reduce the already infamous diversity in human
adaptation to experimental task variables, it is recommended to use
forcing functions that have reasonably low bandwidths, where
McRuer’s inequality [!i < 0:8!c, Eq. (2)] holds.

Third, it is shown that linear identification methods are unable to
capture the nonlinear effects associated with crossover regression.
To enhance identification in experiments that aim at triggering
crossover regression, we should investigate how the linear precision
model can be extended to capture the regressive control behavior or
whether nonlinear operator models are needed.

Also, the use of identification methods that can better capture
nonlinearities in human behavior should be better investigated. In
this respect, the time-domain MLE methods show the largest
potential [22].

Finally, our findings call for more extensive research into the role
of forcing-function characteristics on operator control behavior.
Apparently, the two parameters that are often assumed to be
paramount in the selection of good forcing functions, bandwidth and
signal power, are not sufficient in completely characterizing (and
safeguarding) the possible effects of the forcing function on human
performance and control behavior.

VII. Conclusions

A theoretical and experimental investigation was conducted to
obtain a better understanding of the crossover regression phenome-
non. It was found that a generalized cause of crossover regression is
the human constraint in reducing the crossover model effective time
delay. The resulting excessive forcing-function resonance around the
crossover frequency causes closed-loop tracking performance to
deteriorate rapidly and forces the operator to regress his crossover
frequency. The bandwidth of the forcing function where crossover
regression occurs was found to depend on the participant, however,
and between-subject variability increased considerably in regressed
conditions.

Linear-operator model parameters were more variable in these
conditions, especially the lead-time constant and neuromuscular
frequency. Additionally, human control behavior was found to be
more nonlinear. Linear models could only capture a part of the
observed behavior and the accuracy of the parameter estimates
deteriorated.

Fig. 30 Means and 95% CI, corrected for between-subject variability,
of maximum input-to-error ratio.
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We recommend that, in the design of manual tracking experi-
ments, when linear models are intended to be used, the experimenter
should prevent crossover regression. In addition, we recommend
that, in the actual design of manual controls, the occurrence of
crossover regression should be prevented, because the overall
performance in regressive conditions is significantly lower than in
nonregressive conditions. This imposes requirements on both the
tracking signal, as well as on the control element dynamics.

More research is needed to investigate the effects of forcing-
function characteristics, other than bandwidth and signal power,
on human tracking behavior and performance.
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